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Abstract

As patients with chronic kidney disease (CKD) and chronic heart failure (CHF) increase, there 
is concern about a future heart failure pandemic. Deterioration of renal function is an independent 
prognostic factor for CHF after decongestion. Interactions between renal disease and cardiac disease are 
increasing, including nephrosclerosis and heart failure with preserved ejection fraction (HFpEF), which 
are both derived from augmentation of central pulse pressure by age-related arterial stiffening. Thus, 
it is necessary to treat multiple underlying diseases of cardiorenal syndrome simultaneously. However, 
an effective therapeutic strategy for HFpEF has not been established. This review reconsiders the 
pathophysiology of chronic cardiorenal disease related to arterial stiffening from the viewpoint of central 
hemodynamics and explores treatment options.
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Introduction

Compared with the peripheral blood pressure, the central 
blood pressure is more closely related to organ changes that 
are representative of arteriosclerosis and renal dysfunction, 
including left ventricular (LV) mass and common carotid artery 
intima-media thickness (IMT) [1-4]. In addition, central blood 
pressure has been shown to be a predictor of cardiovascular 
events [1,5-7]. It has been suggested that elevation of central 
blood pressure has a key role in the linkage of heart and kidney 
disease, and central blood pressure may be a predictor of the 
progression of hypertension [8]. Accordingly, antihypertensive 
agents that more effectively reduce central blood pressure could 
be useful for prevention or improvement of organ damage. 

The prevalence of heart failure is increasing worldwide and 
an accelerated increase in people with heart failure has been 
predicted in the future [9,10]. In particular, heart failure with 
preserved ejection fraction (HFpEF) is common among elderly 
persons [11-14]. 

Chronic kidney disease (CKD) is a prognostic factor for 
heart failure [15-17] and it is also increasing worldwide, along 
with underlying diseases such as hypertension and age-related 
nephrosclerosis [18,19]. There has also been an increase of 
diabetic kidney disease (DKD), which is defi ned as atypical 
diabetic nephropathy characterized by mild proteinuria with 
deterioration of renal function and nephrosclerosis [20-23].

Renal insuffi ciency (i.e., an estimated glomerular fi ltration 
rate (GFR) < 60.0 mL/min/1.73 m2] is common in patients with 
chronic heart failure (CHF), and approximately 36% of CHF 
patients also have renal insuffi ciency [16]. Moreover, renal 
dysfunction (assessed by GFR) is independently associated 
with an elevated risk of all cause death, cardiovascular death, 
and hospitalization for heart failure in patients with CHF and a 
preserved or reduced EF [16].

Cardiorenal syndrome (CRS) is the term for the bidirectional 
pathophysiological interaction between cardiac and renal 
dysfunction, and it is classifi ed into 5 types in consideration 
of whether the condition is acute, chronic, or secondary [24]. 
Worsening renal function (WRF) occurs in approximately one 
third of patients admitted to hospital with acute decompensated 
heart failure (ADHF), and is associated with an increased length 
of stay, a higher readmission rate, and worse short-term and 
long-term survival [25-28]. Therefore, a treatment strategy 
is needed for ADHF and acute CRS (type 1). With aging of the 
population, it is predicted that there will also be an increase of 
chronic CRS (type 2), chronic renocardiac syndrome (type 4), 
and secondary CRS (type 5) derived from arteriosclerosis.

Thus, ventricular-arterial-renal interactions are becoming 
an issue of increasing interest with large clinical implications. 
This article reviews the pathophysiology of renal and cardiac 
damage (HFpEF) related to arterial stiffening from the 
perspective of central hemodynamics, and also discusses 
potential therapeutic options for reducing central pulse 
pressure [PP].
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Central blood pressure

Components of central blood pressure: Central blood 
pressure has been noted as an index of the overall health 
of the arterial tree [29]. It is constituted by the ejection 
pressure wave that spreads from the heart to periphery and 
the refl ected pressure wave that spreads in reverse from the 
peripheral arteries to the central region. When the refl ected 
pressure wave is added to the ejection pressure wave during 
late systole, and the central pulse pressure wave is amplifi ed 
by the augmentation pressure [AP] [30]. 

Young persons with normal blood pressure have distensible 
arteries, but elderly persons with hypertension do not. Loss 
of aortic distensibility due to arterial stiffening results in 
an increase of the central PP due to elevation of the central 
systolic blood pressure and a decline of the central diastolic 
blood pressure with loss of the cushion and Windkessel 
effects, because the refl ected pressure wave moves faster and 
the refl ected wave thus shifts from diastole to late systole. 
In elderly hypertensive persons, the augmentation pressure 
[AP] and the central pulse pressure wave are amplifi ed as a 
consequence of the refl ected pressure wave moving to late 
systole. In contrast, the refl ected pressure wave is slower and 
appears during diastole in young normotensive persons because 
of the fl exibility and distensibility of their arteries (Figure 1) 
[29,31]. The interaction between the ejection pressure and the 
refl ected pressure is assessed by pulse wave analysis and is 
expressed as the augmentation index [AI]. In elderly persons 
with increased arterial stiffness, the central systolic blood 
pressure is generally determined by the refl ected pressure 
wave, whereas the brachial systolic blood pressure measures 
the ejection pressure wave (Figure 2).

Clinical implications: The AI of central blood pressure 
is determined by the pulse wave velocity, which refl ects 
segmental arterial elasticity and peripheral refl ectance. 
Elevation of the central PP and AI lead increased LV afterload 
and decreased coronary perfusion due to a decline of diastolic 
pressure, and thus are more closely related to cardiovascular 
target organ damage and cardiovascular events compared 

with the brachial pressure. [1-4]. The central blood pressure 
refl ects LV afterload, and thus is also more closely related to 
production of brain natriuretic peptide (BNP), a marker of 
cardiac workload and hypertrophy, relative to the brachial 
blood pressure [2,32]. Therefore, central PP is considered to be 
a risk indicator that is more pathophysiologically relevant to 
the pathogenesis of cardiovascular disease than the peripheral 
pressure [1,5,7,33-35]. For example, central blood pressure 
is superior for prediction of new-onset hypertension during 
follow-up of persons with high normal blood pressure [8]. 

Relationship among central blood pressure, renal 
hemodynamics, and organ damage: Elevation of the central 
PP is considered to exacerbate renal dysfunction, including an 
increase of albuminuria, as it has a direct infl uence on renal 
hemodynamics [1,3,4,32,36-38]. The parameter used most 
widely for noninvasive evaluation of renal hemodynamics as 
a signifi cant predictor of progressive renal dysfunction is the 
resistive index (RI), which is derived from the pulsatile fl ow-
velocity waveform [4,39-43]. An increase of the RI is related to 
elevation of the central PP and the AI [4], and is also associated 
with renal microvascular damage [4,36,44-46]. In persons 
with normal fl exible and distensible arteries, the PP from the 
central aorta is gradually absorbed by renal arterioles including 
the afferent arterioles, fi nally resulting in non-pulsatile fl ow in 
the efferent arterioles to maintain a constant intraglomerular 
pressure. Autoregulation to constantly maintain the 
intraglomerular pressure at approximately 60 mmHg depends 
on adjustment of pressure in the afferent and efferent arterioles 
by vasoconstriction or vasodilation. It involves secretion of 
renin, tubular glomerular feedback, myogenic responses, and 
sympathetic nervous system activity. This mechanism keeps 
the intraglomerular pressure around 60 mmHg, even if the 
systolic blood pressure varies widely from 90 to 180 mmHg [47]. 
One of the key reasons for progression of renal damage due to 
elevation of central blood pressure is considered to be afferent 
arteriole dysfunction, although the details are still unclear. 
All blood entering the glomerulus passes through the afferent 

Figure 1: Speed of return of the refl ected pressure wave to the central aorta in 
young normotensive and elderly hypertensive subjects.
Note the marked increase of AP during late systole in elderly hypertensive subjects 
due to faster return of the refl ected pressure wave.
AP; augmentation pressure, PP pulse pressure, AI; augmentation index [29,31].

Figure 2: Difference of central and brachial blood pressures in elderly subjects with 
increased vascular stiffness. In elderly subjects with increased vascular stiffness, 
the central systolic blood pressure measures blood pressure due to the refl ected 
pressure wave, whereas the brachial systolic blood pressure measures blood 
pressure due to the ejection pressure wave.
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arteriole and it acts as a gatekeeper that regulates renal blood 
fl ow by active contraction or dilatation. However, when the PP 
cannot be absorbed by the afferent arterioles, it reaches the 
efferent arterioles (Figure 3) [29]. As a result, the glomerular 
capillary walls are affected and hyperfi ltration due to elevation 
of the intraglomerular pressure becomes persistent, leading to 
albuminuria. Thus, abnormal central hemodynamics lead to 
abnormal renal hemodynamics and hypertensive renal damage 
seems to occur due to elevation of the central PP.

Differing effect of antihypertensive agents on central 
blood pressure and brachial blood pressure: The effects of 
various antihypertensive agents differ between the aorta and 
the brachial artery. Vasodilators, including Ca channel blockers 
(CCBs), angiotensin-converting enzyme inhibitors (ACEIs), 
angiotensin II receptor blockers (ARBs), α-blockers, and 
nitrates, reduce the central blood pressure more effectively 
than the brachial blood pressure [48,49]. On the other hand, 
-blockers have a weak effect on the central blood pressure 
[50].

The most pivotal study examining the relative importance of 
central and brachial blood pressures has been the Conduit Artery 
Function Evaluation (CAFÉ) study of the Angio-Scandinavian 
Cardiac Outcomes Trial (ASCOT) [5]. Although brachial 
blood pressure was similarly reduced in both the amlodipine 
±perinopril and atenolol ±thiazide arms of the CAFÉ study, 
there was signifi cantly greater reduction of central systolic 
pressure and PP (due to reduction of refl ected pressure wave) 
with amlodipine-based treatment. In addition, changes in the 
indicators of cardiovascular target organ damage, including left 
ventricular mass and IMT, are more dependent on reduction 
of central blood pressure than brachial blood pressure, and 
improvement due to antihypertensive therapy depends on 
the extent of central blood pressure reduction rather than a 
decrease of brachial pressure [1,2,51]. These reports suggest 
that measuring central blood pressure to monitor treatment 
would be useful for prevention of cardiovascular disease.

Currently, a cut-off value for normal/abnormal central 
blood pressure has not been established, although it was 
recently proposed that 130/90 mmHg could be a cut-off value 
for central blood pressure by investigation of a Taiwanese 
database [52].

It has been suggested that measurement of central pressure 
could be medically cost effective because guiding management 
of hypertension based on central blood pressure results in a 
signifi cantly different therapeutic pathway compared with 
conventional cuff blood pressure measurement, using less 
medication to achieve blood pressure control and avoiding 
adverse effects on LV mass, aortic stiffness, or quality of life 
[53]. Accordingly, it is necessary for the central blood pressure 
level that prevents cardiovascular target organ damage to be 
determined by large-scale controlled studies in the future.

Relationship between central blood pressure and HFpEF

Clinical features of HFpEF: Among all patients with heart 
failure, those with HFpEF are increasing due to aging of 

the population, and the combination of HFpEF with CHF is 
common. These patients do not have a good prognosis, like 
patients who have heart failure with reduced EF (HFrEF), 
and effective treatment has not yet been established [14,54]. 
Compared to HFrEF patients, HFpEF patients are more likely 
to be elderly women and to have hypertensive heart disease 
as the underlying disorder [55-58]. HFrEF is associated 
with deterioration of systolic function on top of diastolic 
dysfunction, so that LV end-diastolic volume increases to 
maintain stroke volume, resulting in elevation of LV end-
diastolic pressure [59-61]. Conversely, HFpEF is related to 
diastolic dysfunction and elevation of LV end-diastolic pressure 
[EDP] occurs without an increase of LV end-diastolic volume 
(EDV) (Figure 4,5). Diagnosis of HFpEF is diffi cult clinically, 
but no increase of LV EDV and LVEF ≥50% are requirements 
[62]. HFpEF can cause pulmonary congestion due to elevation 
of LV EDP derived from increased LV chamber stiffness, in the 
setting of excessive LV preload or afterload and increased heart 
rate during exercise [63,64]. BNP may be normal in up to 30% 
of patients with HFpEF [65,66], especially those who are obese 
[67] or only have exertional symptoms [68].

Figure 3: Decompensation of renal autoregulation and increased intraglomerular 
pressure due to marked elevation of the central blood pressure. Marked elevation 
of the central blood pressure overcomes renal autoregulation because the high 
pulse pressure cannot be absorbed by the renal vessels before the afferent 
arterioles, so that intraglomerular pressure is increased markedly. Eventually, 
albuminuria occurs and the glomerular fi ltration rate decreases.

Figure 4: Relationship between end-systolic elastance and effective arterial 
elastance. EF can be calculated from Ees and Ea if V0 = 0. 
LV = left ventricular; ESP = end-systolic pressure; EDV = end-diastolic volume; 
ESV = end-systolic volume; SV; stroke volume; Ea = effective arterial elastance; 
Ees = end-systolic elastance; V0 = the zero volume intercept of the end-systolic 
pressure-volume line; ESPVR = end-systolic pressure-volume relationship; EDPVR 
= end-diastolic pressure-volume relation; EF = ejection fraction [78].
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Is arterial afterload due to augmentation of central PP 
the main pathophysiology of HFpEF? 

Epidemiologic studies have shown that 40% to 50% 
of patients with heart failure have HFpEF, and that they 
are older than those with HFrEF and are more often female 
[54,58,69]. Moreover, a community study has demonstrated 
that advancing age and female gender are associated with 
increased vascular and ventricular systolic diastolic stiffness, 
even in the absence of cardiovascular disease, suggesting the 
combination of ventricular-vascular stiffness may contribute 
to the increased prevalence of HFpEF, particularly in elderly 
women [58]. Patients with HFpEF are assumed to have 
vascular disease with arterial stiffening as well as cardiac 
disease, because this condition is often accepted to arise 
from hypertension. HFpEF derived from arterial stiffness is 
pathophysiologically and clinically characterized by the failure 
of compensation due to ventricular-arterial coupling (i.e., 
ventricular-arterial coupling disease) [57,70], indicating that 
this is a key determinant of cardiovascular health. It has been 
observed that age-related vascular stiffening, which can have a 
marked effect on ventricular-arterial coupling, is accompanied 
by changes of LV stiffness and diastolic compliance [71]. 
Accordingly, HFpEF should be considered to have a different 
pathogenesis from HFrEF [54,56,57,72].

In HFpEF, ventricular-arterial disease leads to afterload 
mismatch, which results in decompensation of LV end-systolic 
elastance (Ees) for arterial stiffness and augmentation of 
central PP [73-75]. 

Effective arterial elastance (Ea) is an indicator of arterial 
stiffness that is defi ned by the negative slope between the end-
systolic pressure-volume point and EDV [i.e., the ratio of end-
systolic pressure to stroke volume (SV) shown in Figure 4]. Ees 
is an index of LV contractility that is also described by the slope 
of the end-systolic pressure-volume relationship (ESPVR) 
(Figure 4). In elderly patients with hypertension, central PP is 
boosted by an increase of the refl ected pressure wave during 
late systole [29]. Elevation of Ea derived from this increase of 
central PP causes a change in the LV loading sequence with 
an increase of the late-systolic load, resulting in abnormal 
ventricular-arterial coupling and an eventual increase of Ees 
with LV hypertrophy. Furthermore, an increase of late systolic 
loading may incrementally impair early diastolic relaxation 
[76,77]. Thus, an increase of the cardiac arterial afterload with 
elevation of central PP causes secondary cardiac dysfunction 
[57], and is considered to underlie the pathophysiology of 
HFpEF in the elderly [76].

Treatments that can reduce late systolic vascular loading 
and arterial stiffness may be useful for patients with diastolic 
dysfunction by changing the loading conditions, which could 
explain why nitroglycerin improves LV systolic diastolic 
function in HFpEF patients [48,77].

Is cardiac contractility normal in HFpEF?

EF can be expressed as a function of Ees and Ea in the 
following formula (Figure 4) [78]: EF = Ees/(Ees+Ea)

If Ees = Ea, the value of EF becomes 0.5. In patients with 
HFrEF, EF decreases below 0.5 and Ees is lower than Ea. On 
the other hand, in patients with HFpEF, Ees is ≥Ea and EF is 
maintained at ≥0.5.

Under physiological conditions, the Ea/Ees ratio is 
maintained at about 1 to preserve SV. Even if Ea increases 
substantially with advancing age, Ees also increases to keep 
the Ea/Ees ratio around 1, and this coupling is compensated 
[57,70,71]. On the other hand, the Ea/Ees ratio is <1 in HFpEF 
because the increase of Ees exceeds that of Ea [Figures 5, 6] 
[56,79]. Although Ees is elevated in hypertensive heart disease 
depending on increase of Ea, the heart still has the reserve 
force to augment Ees for maintenance of the LV ejection 
fraction. In contrast, the excessive rise of Ees over Ea in HFpEF 
refl ects impaired myocardial contractility and an increase of 
passive myocardial stiffness, which is followed by structural 
changes such as hypertrophy and fi brosis with the gradual 
progression of HFpEF. This process suggests that HFpEF will 
have a poor prognosis [80]. It has not been identifi ed whether 
HFpEF with a normal EF shows myocardial contractility. In 
heart failure with a reduced or preserved EF, a substantial 
increase of Ees irrespective of the increase/decrease of Ea 
causes failure of ventricular-arterial coupling or afterload 
mismatch, resulting in a decrease of SV. In addition, excessive 
augmentation of Ees is followed by myocardial structural 
changes (hypertrophy and fi brosis), leading to more marked 
elevation of diastolic elastance in comparison with HFrEF, 
which can easily precipitate pulmonary congestion due to an 
abrupt increase of LV end-diastolic pressure during exercise 

Figure 5: Comparison of LV morphology and function in patients with HFrEF or 
HFpEF.
The slope of the end-systolic pressure-volume relationship [end-systolic elastance], 
which is obtained by recording pressure-volume loops at different preload levels, 
is steeper in patients with HFpEF [solid lines] than in people with normal hearts, 
and HFpEF patients typically exhibit an end-diastolic pressure-volume relationship 
shifted upwards and to the left [solid lines] [dashed lines = normal hearts]. In 
contrast, the slope of the end-systolic pressure-volume relationship is typically 
less steep in patients with HFrEF [solid lines] than in people with normal hearts 
[dashed lines]. LV = left ventricular; SV = stroke volume; LVEF; left ventricular 
ejection fraction; LVEDV; left ventricular end-diastolic volume; LVEDP = left 
ventricular end-diastolic pressure; Ea = effective arterial elastance; Ees = end-
systolic elastance; E/e’ = transmitral peak velocity during early relaxation to early 
diastolic peak mitral annulus velocity; BNP = brain natriuretic peptide [61,63,67].
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[64,81]. Furthermore, arterial stiffening and LV remodeling 
by activation of the sympathetic nervous system and renin-
angiotensin-aldosterone [RRA] system lead to progression of 
ventricular-arterial coupling disease [82]. 

Potential therapeutic strategies targeting abnormal ven-
tricular-arterial stiffening in HFpEF

At present, the use of ARBs, ACEIs, mineralocorticoid 
receptor antagonists (MRAs), and β-blockers has been 
established for HFrEF, but not for HFpEF [82-85]. Because the 
RAA system is activated, elevation of central blood pressure 
followed by increased arterial stiffness causes ventricular 
remodeling due to excessive afterload, resulting in progression 
of heart failure. Therefore, vasodilators (ARBs, ACEIs, and 
CCBs) are considered to be more effective for reducing the 
central PP in HFpEF with increased arterial stiffness to manage 
CHF after decongestion.

Treatment of chronic CRS for preservation of cardiac 
and renal function

It is important to use diuretics for decongestion when 
ADHF or acute exacerbation of CHF occurs regardless of 
whether a patient has HFpEF and HFrEF. At the same time, 
renal congestion due to volume overload (i.e., excessive renal 
afterload) causes WRF [86-88] complicated by elevation 
of central and renal venous pressures, which should also be 
treated with diuretics. 

Repeated exacerbation and improvement of heart failure 
leads to residual damage, and cardiac function cannot recover 
fully to the previous state despite treatment for heart failure. 
As a result of recurrent episodes, the prognosis of heart failure 
deteriorates in an additive fashion [89]. Thus, the objective of 
treating CHF is to maintain cardiac and renal function or delay 
progression of dysfunction without acute exacerbations. 

The therap eutic strategy for CHF, especially HFpEF, 
involves reducing afterload (i.e., afterload mismatch) to 
maintain ventricular performance. CCBs and/or ARBs are 
useful antihypertensive agents that lower central PP by 
vasodilatation. The increase of proteinuria mediated by 
elevation of intraglomerular pressure can be treated by using 
ARBs that dilate the renal efferent arterioles. When high-dose 
loop diuretics are used continuously to treat CHF without 
congestion, the RAA system is activated, leading to renal 
impairment along with exacerbation of CHF by progression 
of LV remodeling [82]. Reducing the daily dosage/number 
of doses of loop diuretics by using long-acting agents is 
important for minimizing RAA system activity. In addition, 
use of a selective vasopressin-2 receptor antagonist may be 
favorable for renal protection because it induces water diuresis 
that does not activate the RAA system [90] while maintaining 
renal hemodynamics [91]. In the future, investigations should 
be performed to determine the optimum diuretic dosages and 
combinations adjusted by the pathophysiologic state of heart 
failure and renal function. Improving vascular distensibility 
including vasodilatation by nitric oxygen (NO) is also attractive 
[57]. However, it is necessary to consider hemodynamic 
treatment that not only reduces afterload on the heart but also 
renal afterload during heart failure.

WRF is frequent among patients hospitalized for heart 
failure [28,92,93]. The prevalence of WRF is comparable in 
HFpEF and HFrEF, being associated with baseline CKD, the 
history of hypertension and diabetes, age, and diuretic use [94], 
which are also underlying lifestyle-related diseases for HFpEF. 
It seems that HFpEF may arise secondary to the aging process 
and lifestyle-related diseases associated with arterial stiffening 
and LV remodeling. Therefore, a strategy for preventing HFpEF 
(for which there is no established treatment) may involve early 
prevention of various lifestyle-related diseases associated with 
aging. 

Conclusions

Clarifying the pathophysiology of ventricular-arterial-
renal interactions with advancing age is very important in 
relation to developing therapeutic strategies for chronic 
CRS. Elevation of the central systolic blood pressure with an 
increase of PP promotes LV remodeling, LV hypertrophy, and 
renal impairment, leading to a worse cardiovascular prognosis 
compared with elevation of the peripheral systolic blood 
pressure. Measurement of the central pressure is required 
clinically to better identify the mechanisms of ventricular-
arterial-renal interactions.

The therapeutic strategy for CHF, especially HFpEF, 
should involve reducing afterload (i.e., afterload mismatch) to 
maintain ventricular performance. CCBs and/or ARBs are useful 
antihypertensive agents that lower central PP by vasodilatation. 
Moreover, regular exercise, proper caloric intake without 
excessive amounts of salt and management of body weight 
without obesity from adolescence may be needed to slow the 
rate of progression of arterial stiffness at an accelerating 
pace as aging. To establish an effective therapeutic strategy 
for cardiorenal disease based on central hemodynamics, it is 

Figure 6: Relationship between end-systolic elastance and effective arterial 
elastance in patients with HFpEF. The increase of Ees is overcome by elevation 
of Ea for preservation of EF. Elevation of ESP [end-systolic pressure] is mediated 
by adding the refl ected pulse pressure to central pressure due to arterial stiffness. 
Central pulse pressure is increased along with the augmentation index [AI]. LV = 
left ventricular; SV = stroke volume; LVEDV; left ventricular end-diastolic volume; 
LVEDP = left ventricular end-diastolic pressure; Ea = effective arterial elastance; 
Ees = end-systolic elastance; EDPVR = end-diastolic pressure-volume relation; PP 
= central pulse pressure; AP; augmentation pressure; other abbreviations are as 
in fi gure 5 [56,71,79].
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necessary for the central blood pressure level that prevents 
cardiovascular target organ damage to be determined by large-
scale controlled studies in the future.
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