Progression in Diagnosis and Treatment of Resistant Hypertension

Main Article Content

Mingjun HE
Jianjun MU*
Fuqiang LIU
Keyu REN
Yang WANG
Tongshuai GUO

Abstract

Introduction: Resistant Hypertension (RH) is a major risk factor of numerous diseases. RH is a challenging clinical problem,many factors affect blood pressure (BP) control. Correct diagnosis and appropriate drug therapy are pretty important to get BP controlled. We aim to attract physicians' attention to adopt correct measures to diagnose and treat RH.


Method: Articlesare obtained from the Internet, www.pubmed.com, Medline and several authors via e-mail.


Result and Conclusion: 1.Using a systematic approach to find out the causes of RH and the distinctions between pseudo-resistance and true resistance areof importance for treatment. 2. Following the current treatment guidelines and using the standardized way to establish a flowchart to manage the patientsare the correct methods for BP control. 3. In the absence of novel antihypertensive drugs targeting new pathways, device-based therapies including RDN, carotid baroreflex activation and continuous positive airway pressure (CPAP) have shown encouraging results. 4. Further efforts on the pathophysiology of RH will help to establish better drug combinations or new ways on BP control.

Downloads

Download data is not yet available.

Article Details

HE, M., MU, J., LIU, F., REN, K., WANG, Y., & GUO, T. (2014). Progression in Diagnosis and Treatment of Resistant Hypertension. Journal of Cardiovascular Medicine and Cardiology, 1(1), 001–006. https://doi.org/10.17352/2455-2976.000001
Short Communication(s)

Copyright (c) 2014 He M

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Licensing and protecting the author rights is the central aim and core of the publishing business. Peertechz dedicates itself in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. Peertechz licensing terms are formulated to facilitate reuse of the manuscripts published in journals to take maximum advantage of Open Access publication and for the purpose of disseminating knowledge.

We support 'libre' open access, which defines Open Access in true terms as free of charge online access along with usage rights. The usage rights are granted through the use of specific Creative Commons license.

Peertechz accomplice with- [CC BY 4.0]

Explanation

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.

With this license, the authors are allowed that after publishing with Peertechz, they can share their research by posting a free draft copy of their article to any repository or website.
'CC BY' license observance:

License Name

Permission to read and download

Permission to display in a repository

Permission to translate

Commercial uses of manuscript

CC BY 4.0

Yes

Yes

Yes

Yes

The authors please note that Creative Commons license is focused on making creative works available for discovery and reuse. Creative Commons licenses provide an alternative to standard copyrights, allowing authors to specify ways that their works can be used without having to grant permission for each individual request. Others who want to reserve all of their rights under copyright law should not use CC licenses.

Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, et al. (2013) 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 31: 1281-1357.

Persell SD (2011) Prevalence of resistant hypertension in the United States, 2003-2008. Hypertension 57: 1076-1080.

Barbato A, Galletti F, Iacone R, Cappuccio FP, Rossi G, et al. (2012) Predictors of resistant hypertension in an unselected sample of an adult male population in Italy. Intern Emerg Med 7: 343-351.

Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, et al. (2012) Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation 125: 1635-1642.

Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, et al. (2008) Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 51: 1403-1419.

Vrijens B, Vincze G, Kristanto P, Urquhart J, Burnier M (2008) Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories. BMJ 336: 1114-1117.

Armario P, Oliveras A, Hernandez DRR, Ruilope LM, De La Sierra A (2011) [Prevalence of target organ damage and metabolic abnormalities in resistant hypertension]. Med Clin (Barc) 137: 435-439.

Pisoni R, Ahmed MI, Calhoun DA (2009) Characterization and treatment of resistant hypertension. Curr Cardiol Rep 11: 407-413.

Tiurenkov IN (2002) [Drug-induced hypertension and hypertensive crisis]. Klin Med (Mosk) 80: 18-21.

Pedrosa RP, Drager LF, Gonzaga CC, Sousa MG, de Paula LK, et al. (2011) Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 58: 811-817.

Pratt-Ubunama MN, Nishizaka MK, Boedefeld RL, Cofield SS, Harding SM (2007) Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension. Chest 131: 453-459.

Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P (2002) Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 40: 892-896.

Mukherjee JJ, Khoo CM, Thai AC, Chionh SB, Pin L (2010) Type 2 diabetic patients with resistant hypertension should be screened for primary aldosteronism. Diab Vasc Dis Res 7: 6-13.

Nishizaka MK, Pratt-Ubunama M, Zaman MA, Cofield S, Calhoun DA (2005) Validity of plasma aldosterone-to-renin activity ratio in African American and white subjects with resistant hypertension. Am J Hypertens 18: 805-812.

Textor SC (2009) Current approaches to renovascular hypertension. Med Clin North Am 93: 717-732.

Nakano D, Mori T (2012) Salt-sensitive hypertension. Introduction. Clin Exp Pharmacol Physiol 39: 87-89.

Hanselin MR, Saseen JJ, Allen RR, Marrs JC, Nair KV (2011) Description of antihypertensive use in patients with resistant hypertension prescribed four or more agents. Hypertension 58: 1008-1013.

Hermida RC, Ayala DE, Calvo C, Lopez JE, Mojon A, et al. (2005) Effects of time of day of treatment on ambulatory blood pressure pattern of patients with resistant hypertension. Hypertension 46: 1053-1059.

Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376: 1903-1909.

Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 2011; 57: 911-917.

Steichen O, Sapoval M, Frank M, Bobrie G, Plouin PF (2012) [Renal-nerve ablation in patients with resistant hypertension: caution is still needed]. Presse Med 41: 349-357.

Mahfoud F, Lüscher TF, Andersson B, Baumgartner I, Cifkova R, et al. (2013) Expert consensus document from the European Society of Cardiology on catheter-based renal denervation. Eur Heart J 34: 2149-2157.

Medtronic announces US renal denervation pivotal trial fails to meet primary efficacy endpoint while meeting primary safety end point [press release]. January 9, 2014.

Hajduczok G, Chapleau MW, Johnson SL, Abboud FM (1991) Increase in sympathetic activity with age. I. Role of impairment of arterial baroreflexes. Am J Physiol 260: H1113-1120.

Zar T, Peixoto AJ (2008) Paroxysmal hypertension due to baroreflex failure. Kidney Int 74: 126-131.

Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, et al. (2010) Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol 56: 1254-1258.

Ng MM, Sica DA, Frishman WH (2011) Rheos: an implantable carotid sinus stimulation device for the nonpharmacologic treatment of resistant hypertension. Cardiol Rev 19: 52-57.