ISSN: 2455-2976
Journal of Cardiovascular Medicine and Cardiology
Review Article       Open Access      Peer-Reviewed

Bifurcation Analysis and Multiobjective Nonlinear Model Predictive Control of Drug Addiction Models

Lakshmi N Sridhar*

Chemical Engineering Department, University of Puerto Rico, Mayaguez, PR 00681, USA

*Corresponding author: Lakshmi N Sridhar, Chemical Engineering Department, University of Puerto Rico, Mayaguez, PR 00681, USA, E-mail: [email protected]
Received: 16 December, 2024 | Accepted: 23 December, 2024 | Published: 24 December, 2024
Keywords: Drug; Addiction; Bifurcation; Optimal control

Cite this as

Sridhar LN. Bifurcation Analysis and Multiobjective Nonlinear Model Predictive Control of Drug Addiction Models. J Cardiovasc Med Cardiol. 2024;11(4):096-102. Available from: 10.17352/2455-2976.000215

Copyright License

© 2024 Sridhar LN. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Bifurcation analysis and nonlinear model predictive control were performed on drug addiction models. Rigorous proof showing the existence of bifurcation (branch) points is presented along with computational validation. It is also demonstrated (both numerically and analytically) that the presence of the branch points was instrumental in obtaining the Utopia solution when the multiobjective nonlinear model prediction calculations were performed. Bifurcation analysis was performed using the MATLAB software MATCONT while the multi-objective nonlinear model predictive control was performed by using the optimization language PYOMO.

Introduction

Mental health has become a significant focus for researchers and medical doctors in the last decade. Ironically, drug addiction is both cause and effect for the existence of mental health problems. People with mental health issues resort to drugs and drugs in turn lead to mental health problems. Additionally, drug addiction has led to a considerable amount of poverty and crime. It is therefore important to develop strategies to curb drug addiction. The problem of drug addiction has led to computational research to develop reliable techniques to be able to control drug addiction. This work aims to perform bifurcation analysis in conjunction with multiobjective nonlinear model predictive control (MNLMPC) calculations on models involving drug addiction. This paper is organized as follows. First, the background section with the literature review is presented. The bifurcation analysis techniques and the multiobjective nonlinear model predictive control strategies are presented followed by a description of how the presence of singular points affects the MNLMPC calculations. Two drug addiction example problems where MNLMPC calculations are performed in conjunction with bifurcation analysis are presented. It is numerically demonstrated that the presence of bifurcation points in the drug addiction models enables the MNLMPC calculations to converge to the Utopia solution. It is essential to develop rigorous strategies to be able to effectively combat the drug addiction problem minimizing the number of drug addicts and avoiding the wastage of resources. This paper is a step in that direction.

Background

Bae [1] studied the dynamics of tobacco addiction models. Mushayabasa, and co-workers [2-4] performed dynamic and optimal control studies of drug addiction models. Hasan, et al. [5] investigated the effect of having drug rehabilitation centers to combat drug addiction. Islam, et al. [6,7] developed a mathematical analysis of some dynamic Models of drug addiction, while Lavi, et al. [8] studied the dynamics of drug resistance. Nyabadza, et al. [9] and White, et al. [10] modeled the dynamics of crystal meth abuse and heroin epidemics. Rwat and co-workers [11] examined the effect of recycling the recovered individuals back into the population while Donoghoe [12] studied the effect of drugs on global health. Murray, et al. (2007) [13] studied the effect of cannabis on mental health Pluddemann, [14] investigated the use of strategies to, monitor alcohol and substance abuse. Recent work of McGinty, et al. [15], Hooker, et al. [16], Butler, et al. [17], Scott, et al. [18] Chang, et al. [19] and Paquette, et al. [20] have demonstrated the devastating effects of drug addiction and the urgent need to combat this problem.

Akanni, et al. [21] Abidemi, et al. [22] and Olaniyi, et al. [23] studied dynamic models involving illicit drug use. All the optimal control work done so far involves single objective minimization. In this work, multiobjective nonlinear model predictive control calculations are performed on drug addiction models in conjunction with bifurcation analysis. It is numerically demonstrated for two problems involving drug addiction that the presence of bifurcation points enables the MNLMPC calculations to converge to the Utopia solution.

The bifurcation analysis and the MNLPMC methods will now be presented followed by an explanation as to why the presence of bifurcation points leads to the MNLMPC calculations converging to the Utopia solution.

Bifurcation analysis

The existence of multiple steady-states (caused by limit and branch point singularities) and oscillatory behavior caused by Hopf bifurcation points) in chemical processes has led to a lot of computational work to explain the causes of these nonlinear phenomena. N MATCONT, [24,25] is a commonly used software to find limit points, branch points, and Hopf bifurcation points. Consider an ODE system.

x ˙ =f(x,β)       (1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaQabmiEayaacaGaeyypa0JaamOzaiaacIcacaWG4bGaaiilaiabek7aIjaacMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGPaaaaa@46CC@

x R n MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadkfadaahaaWcbeqaaiaad6gaaaaaaa@3C7E@ The tangent plane at any point x is [v1, v2, v3, v4, …. vn+1]. Define matrix A given by

A=[ f 1 x 1 f 1 x 2 f 1 x 3 f 1 x 4 .......... f 1 x n f 1 β f 2 x 1 f 2 x 2 f 2 x 3 f 2 x 4 .......... f 2 x n f 2 β ........................................................... ........................................................... f n x 1 f n x 2 f n x 3 f n x 4 .......... f n x n f n β ]        (2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGaeyypa0tcfa4aamWaaKqzGeabaeqakeaajuaGdaWcaaGcbaqcLbsacqGHciITcaWGMbqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaaaOqaaKqzGeGaeyOaIyRaamiEaKqbaoaaBaaaleaajugibiaaigdaaSqabaaaaKqzGeGaaGzbVNqbaoaalaaakeaajugibiabgkGi2kaadAgajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaaGcbaqcLbsacqGHciITcaWG4bqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaaaaqcLbsacaaMf8Ecfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOzaKqbaoaaBaaaleaajugibiaaigdaaSqabaaakeaajugibiabgkGi2kaadIhajuaGdaWgaaWcbaqcLbsacaaIZaaaleqaaaaajugibiaaywW7juaGdaWcaaGcbaqcLbsacqGHciITcaWGMbqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaaaOqaaKqzGeGaeyOaIyRaamiEaKqbaoaaBaaaleaajugibiaaisdaaSqabaaaaKqzGeGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaKqbaoaalaaakeaajugibiabgkGi2kaadAgajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaaGcbaqcLbsacqGHciITcaWG4bqcfa4aaSbaaSqaaKqzGeGaamOBaaWcbeaaaaqcLbsacaaMf8Ecfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOzaKqbaoaaBaaaleaajugibiaaigdaaSqabaaakeaajugibiabgkGi2kabek7aIbaaaOqaaKqbaoaalaaakeaajugibiabgkGi2kaadAgajuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaaGcbaqcLbsacqGHciITcaWG4bqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaaaaqcLbsacaaMf8Ecfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOzaKqbaoaaBaaaleaajugibiaaikdaaSqabaaakeaajugibiabgkGi2kaadIhajuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaaaajugibiaaywW7juaGdaWcaaGcbaqcLbsacqGHciITcaWGMbqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaaaOqaaKqzGeGaeyOaIyRaamiEaKqbaoaaBaaaleaajugibiaaiodaaSqabaaaaKqzGeGaaGzbVNqbaoaalaaakeaajugibiabgkGi2kaadAgajuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaaGcbaqcLbsacqGHciITcaWG4bqcfa4aaSbaaSqaaKqzGeGaaGinaaWcbeaaaaqcLbsacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOzaKqbaoaaBaaaleaajugibiaaikdaaSqabaaakeaajugibiabgkGi2kaadIhajuaGdaWgaaWcbaqcLbsacaWGUbaaleqaaaaajugibiaaywW7juaGdaWcaaGcbaqcLbsacqGHciITcaWGMbqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaaaOqaaKqzGeGaeyOaIyRaeqOSdigaaaGcbaqcLbsacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaaGcbaqcLbsacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOzaKqbaoaaBaaaleaajugibiaad6gaaSqabaaakeaajugibiabgkGi2kaadIhajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaaaajugibiaaywW7juaGdaWcaaGcbaqcLbsacqGHciITcaWGMbqcfa4aaSbaaSqaaKqzGeGaamOBaaWcbeaaaOqaaKqzGeGaeyOaIyRaamiEaKqbaoaaBaaaleaajugibiaaikdaaSqabaaaaKqzGeGaaGzbVNqbaoaalaaakeaajugibiabgkGi2kaadAgajuaGdaWgaaWcbaqcLbsacaWGUbaaleqaaaGcbaqcLbsacqGHciITcaWG4bqcfa4aaSbaaSqaaKqzGeGaaG4maaWcbeaaaaqcLbsacaaMf8Ecfa4aaSaaaOqaaKqzGeGaeyOaIyRaamOzaKqbaoaaBaaaleaajugibiaad6gaaSqabaaakeaajugibiabgkGi2kaadIhajuaGdaWgaaWcbaqcLbsacaaI0aaaleqaaaaajugibiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cajuaGdaWcaaGcbaqcLbsacqGHciITcaWGMbqcfa4aaSbaaSqaaKqzGeGaamOBaaWcbeaaaOqaaKqzGeGaeyOaIyRaamiEaKqbaoaaBaaaleaajugibiaad6gaaSqabaaaaKqzGeGaaGzbVNqbaoaalaaakeaajugibiabgkGi2kaadAgajuaGdaWgaaWcbaqcLbsacaWGUbaaleqaaaGcbaqcLbsacqGHciITcqaHYoGyaaaaaOGaay5waiaaw2faaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGPaaaaa@8396@

With β the bifurcation parameter. The matrix A can be written in a compact form as

A=[B| f β ]      (3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9iaacUfacaWGcbGaaiiFamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kabek7aIbaacaGGDbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGPaaaaa@489F@

The tangent surface must be satisfied.

Av=0      (4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGaamODaiabg2da9iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabMcaaaa@3FE2@

For both limit and branch points the matrix B must be singular. For a limit point (LP) the n+1th component of the tangent vector vn+1 = 0 and for a Branch Point (BP) the matrix [ A v T ] MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaKqzGeabaeqakeaajugibiaadgeaaOqaaKqzGeGaamODaKqbaoaaCaaaleqabaqcLbsacaWGubaaaaaakiaawUfacaGLDbaaaaa@3E29@ must be singular., The function det(2 f x (x,β) I n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaciizaiaacwgacaGG0bGaaiikaiaaikdacaWGMbqcfa4aaSbaaSqaaKqzGeGaamiEaaWcbeaajugibiaacIcacaWG4bGaaiilaiabek7aIjaacMcacqWIzkszcaWGjbqcfa4aaSbaaSqaaKqzGeGaamOBaaWcbeaajugibiaacMcaaaa@491D@ should be zero for a Hopf bifurcation point. MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiablMPiLbaa@3799@ Indicates the alternate product while In is the n-square identity matrix. A detailed derivation can be found in Kuznetsov [26,27] and Govaerts [28]. Sridhar [29] used Matcont to perform bifurcation analysis on chemical engineering problems.

MNLMPC (Multiobjective Nonlinear Model Predictive Control) method

The Multiobjective Nonlinear Model Predictive Control (MNLMPC) method was first proposed by Flores Tlacuahuaz, et al. [30] and used by Sridhar [31]. This method is rigorous and it does not involve the use of weighting functions nor does it impose additional parameters or additional constraints on the problem unlike the weighted function or the epsilon correction method [32]. For a problem that is posed as

minJ(x,u)=( x 1 , x 2 .... x k ) subjectto dx dt =F(x,u);h(x,u)0; x L x x U ; u L u u U        (5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaciGGTbGaaiyAaiaac6gacaWGkbGaaiikaiaadIhacaGGSaGaamyDaiaacMcacqGH9aqpcaGGOaGaamiEaKqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacaGGSaGaamiEaKqbaoaaBaaaleaajugibiaaikdaaSqabaqcLbsacaGGUaGaaiOlaiaac6cacaGGUaGaamiEaKqbaoaaBaaaleaajugibiaadUgaaSqabaqcLbsacaGGPaaakeaajugibiaadohacaWG1bGaamOyaiaadQgacaWGLbGaam4yaiaadshacaaMe8UaamiDaiaad+gacaaMe8UaaGjbVNqbaoaalaaakeaajugibiaadsgacaWG4baakeaajugibiaadsgacaWG0baaaiabg2da9iaadAeacaGGOaGaamiEaiaacYcacaWG1bGaaiykaiaacUdacaWGObGaaiikaiaadIhacaGGSaGaamyDaiaacMcacqGHKjYOcaaIWaGaai4oaiaadIhajuaGdaahaaWcbeqaaKqzGeGaamitaaaacqGHKjYOcaWG4bGaeyizImQaamiEaKqbaoaaCaaaleqabaqcLbsacaWGvbaaaiaacUdacaWG1bqcfa4aaWbaaSqabeaajugibiaadYeaaaGaeyizImQaamyDaiabgsMiJkaadwhajuaGdaahaaWcbeqaaKqzGeGaamyvaaaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqGPaaaaaa@8E07@

The MNLMPC method first solves dynamic optimization problems independently minimizing/maximizing each xi individually. The minimization/maximization of xi will lead to the values xi* . Then the optimization problem that will be solved is

min { x i x i * } 2 subjectto dx dt =F(x,u);h(x,u)0; x L x x U ; u L u u U       (6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaciGGTbGaaiyAaiaac6gajuaGdaGcaaGcbaqcLbsacaaMe8Uaai4EaiaadIhajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaeyOeI0IaamiEaKqbaoaaDaaaleaajugibiaadMgaaSqaaKqzGeGaaiOkaaaacaGG9bqcfa4aaWbaaSqabeaajugibiaaikdaaaaaleqaaaGcbaqcLbsacaWGZbGaamyDaiaadkgacaWGQbGaamyzaiaadogacaWG0bGaaGjbVlaadshacaWGVbGaaGjbVlaaysW7juaGdaWcaaGcbaqcLbsacaWGKbGaamiEaaGcbaqcLbsacaWGKbGaamiDaaaacqGH9aqpcaWGgbGaaiikaiaadIhacaGGSaGaamyDaiaacMcacaGG7aGaamiAaiaacIcacaWG4bGaaiilaiaadwhacaGGPaGaeyizImQaaGimaiaacUdacaWG4bqcfa4aaWbaaSqabeaajugibiaadYeaaaGaeyizImQaamiEaiabgsMiJkaadIhajuaGdaahaaWcbeqaaKqzGeGaamyvaaaacaGG7aGaamyDaKqbaoaaCaaaleqabaqcLbsacaWGmbaaaiabgsMiJkaadwhacqGHKjYOcaWG1bqcfa4aaWbaaSqabeaajugibiaadwfacaqGGaaaaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabAdacaqGPaaaaaa@87C5@

This will provide the control values for various times. The first obtained control value is implemented and the remaining is discarded. This procedure is repeated until the implemented and the first obtained control values are the same.

The optimization package in Python, Pyomo [33] where the differential equations are automatically converted to a Nonlinear Program (NLP) using the orthogonal collocation method [34] is commonly used for these calculations. State-of-the-art solvers like IPOPT [35] and BARON [36] are normally used in conjunction with PYOMO.

Effect of singularities (Limit Point (LP) and Branch Point (BP)) on MNLMPC

Let the minimization be of the variables P1, P2 l result in the values M1 and M2. The multiobjective objective function to be minimized will result in the problem.

min 0 t f (( p 1 (t)dt) M 1 ) 2 + 0 t f (( p 2 (t)dt) M 2 ) 2 = 0 t f Ρ(x,t)dt         (7) subjectto d x i dt = g i (x,u) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaciGGTbGaaiyAaiaac6gacaaMf8Ecfa4aa8qCaOqaaKqzGeGaaiikaiaacIcacaWGWbqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaacIcacaWG0bGaaiykaiaadsgacaWG0bGaaiykaiabgkHiTiaad2eajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaiykaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRKqbaoaapehakeaajugibiaacIcacaGGOaGaamiCaKqbaoaaBaaaleaajugibiaaikdaaSqabaqcLbsacaGGOaGaamiDaiaacMcacaWGKbGaamiDaiaacMcacqGHsislcaWGnbqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaacMcajuaGdaahaaWcbeqaaKqzGeGaaGOmaaaaaSqaaKqzGeGaaGimaaWcbaqcLbsacaWG0bqcfa4aaSbaaWqaaKqzGeGaamOzaaadbeaaaKqzGeGaey4kIipaaSqaaKqzGeGaaGimaaWcbaqcLbsacaWG0bqcfa4aaSbaaWqaaKqzGeGaamOzaaadbeaaaKqzGeGaey4kIipacqGH9aqpjuaGdaWdXbGcbaqcLbsacqqHHoGucaGGOaGaamiEaiaacYcacaWG0bGaaiykaiaadsgacaWG0baaleaajugibiaaicdaaSqaaKqzGeGaamiDaKqbaoaaBaaameaajugibiaadAgaaWqabaaajugibiabgUIiYdqcfaOaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4naiaabMcaaOqaaKqzGeGaam4CaiaadwhacaWGIbGaamOAaiaadwgacaWGJbGaamiDaiaaysW7caWG0bGaam4BaiaaysW7caaMe8Ecfa4aaSaaaOqaaKqzGeGaamizaiaadIhajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaaGcbaqcLbsacaWGKbGaamiDaaaacqGH9aqpcaWGNbqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaacIcacaWG4bGaaiilaiaadwhacaGGPaaaaaa@A782@

The Euler Lagrange equation also known as costate equations will be

d λ i dt =( P x i + λ i g i )       (8) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaiabeU7aSLqbaoaaBaaaleaajugibiaadMgaaSqabaaakeaajugibiaadsgacaWG0baaaiabg2da9iabgkHiTiaacIcajuaGdaWcaaGcbaqcLbsacqGHciITcaWGqbaakeaajugibiabgkGi2kaadIhajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaaaajugibiabgUcaRiabeU7aSLqbaoaaBaaaleaajugibiaadMgaaSqabaqcLbsacaWGNbqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaacMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabIdacaqGPaaaaa@5AB9@

λi is the Lagrangian multiplier. Taking the derivative of the objective function we get

d d x i ( ( p 1 M 1 ) 2 + ( p 2 M 2 ) 2 )=2( p 1 M 1 ) d d x i ( p 1 M 1 )+2( p 2 M 2 ) d d x i ( p 2 M 2 )        (9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaaGcbaqcLbsacaWGKbGaamiEaKqbaoaaBaaaleaajugibiaadMgaaSqabaaaaKqzGeGaaiikaiaacIcacaWGWbqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgkHiTiaad2eajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaiykaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaacIcacaWGWbqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiabgkHiTiaad2eajuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaiykaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaiaacMcacqGH9aqpcaaIYaGaaiikaiaadchajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaeyOeI0IaamytaKqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacaGGPaqcfa4aaSaaaOqaaKqzGeGaamizaaGcbaqcLbsacaWGKbGaamiEaKqbaoaaBaaaleaajugibiaadMgaaSqabaaaaKqzGeGaaiikaiaadchajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaeyOeI0IaamytaKqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacaGGPaGaey4kaSIaaGOmaiaacIcacaWGWbqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiabgkHiTiaad2eajuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaiykaKqbaoaalaaakeaajugibiaadsgaaOqaaKqzGeGaamizaiaadIhajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaaaajugibiaacIcacaWGWbqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiabgkHiTiaad2eajuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaiykaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabMdacaqGPaaaaa@94D0@

At the Utopia point both (P1 – M1) and (P2 – M1) are zero. Hence

d d x i ( ( p 1 M 1 ) 2 + ( p 2 M 2 ) 2 )=0      (10) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaaajuaGdaWcaaGcbaqcLbsacaWGKbaakeaajugibiaadsgacaWG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaaaaqcLbsacaGGOaGaaiikaiaadchajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaeyOeI0IaamytaKqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacaGGPaqcfa4aaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaiikaiaadchajuaGdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaeyOeI0IaamytaKqbaoaaBaaaleaajugibiaaikdaaSqabaqcLbsacaGGPaqcfa4aaWbaaSqabeaajugibiaaikdaaaGaaiykaiabg2da9iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabcdacaqGPaaaaa@5E90@

The co-state equation in optimal control is

d dt ( λ i )= d d x i ( ( p 1 M 1 ) 2 + ( p 2 M 2 ) 2 ) g x λ i       (11) λ i ( t f )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGdaWcaaGcbaqcLbsacaWGKbaakeaajugibiaadsgacaWG0baaaiaacIcacqaH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaaiykaiabg2da9iabgkHiTKqbaoaalaaakeaajugibiaadsgaaOqaaKqzGeGaamizaiaadIhajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaaaajugibiaacIcacaGGOaGaamiCaKqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHsislcaWGnbqcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaacMcajuaGdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHRaWkcaGGOaGaamiCaKqbaoaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHsislcaWGnbqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaacMcajuaGdaahaaWcbeqaaKqzGeGaaGOmaaaacaGGPaGaeyOeI0Iaam4zaKqbaoaaBaaaleaajugibiaadIhaaSqabaqcLbsacqaH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeymaiaabMcaaOqaaKqzGeGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaacIcacaWG0bqcfa4aaSbaaSqaaKqzGeGaamOzaaWcbeaajugibiaacMcacqGH9aqpcaaIWaaaaaa@7E7C@

λi is the Lagrangian multiplier. The first term in this equation is 0 and hence.

d dt ( λ i )= g x λ i        (12) λ i ( t f )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGdaWcaaGcbaqcLbsacaWGKbaakeaajugibiaadsgacaWG0baaaiaacIcacqaH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaaiykaiabg2da9iabgkHiTiaadEgajuaGdaWgaaWcbaqcLbsacaWG4baaleqaaKqzGeGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGYaGaaeykaaGcbaqcLbsacqaH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaaiikaiaadshajuaGdaWgaaWcbaqcLbsacaWGMbaaleqaaKqzGeGaaiykaiabg2da9iaaicdaaaaa@5DE8@

If the set of ODE dx dt =g(x,u) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaakeaajugibiaadsgacaWG4baakeaajugibiaadsgacaWG0baaaiabg2da9iaadEgacaGGOaGaamiEaiaacYcacaWG1bGaaiykaaaa@4171@ has a limit or a branch point, gx is singular.

This implies that there are two different vectors-values for [λi] where d dt ( λ i )>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaaGcbaqcLbsacaWGKbGaamiDaaaacaGGOaGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaacMcacqGH+aGpcaaIWaaaaa@422D@ and d dt ( λ i )<0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaaGcbaqcLbsacaWGKbGaamiDaaaacaGGOaGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaacMcacqGH8aapcaaIWaaaaa@4229@ . In between there is a vector [λi] where This coupled with the boundary condition λi(tf) = 0 will lead to [λi] = 0 which will make the problem an unconstrained optimization problem. The only solution for the unconstrained problem is the Utopia solution.

Results and discussion

In this section, the results of bifurcation analysis and MNLMPC calculations for two problems involving drug addiction are presented. The models used are described in Islam, et al. [7] and Mushayabasa, et al. [4]. The equations for each problem are presented followed by the bifurcation analysis and MNLMPC results.

Problem 1 Islam, et al. [7]

Equations representing problem 1

  • Sa(t) represents individuals who are not drug users, but are at a high risk of taking drugs
  • L(t)) represents light drug users
  • H(t) represents heavy drug users
  • Rv(t) represents drug users under treatment in rehabilitation
  • Q(t) represents individuals who will never take drugs

The equations are

d S a dt =rα S a Hμ S a u 1 S a dL dt =α S a HμLβLδL u 2 L dH dt =βLμHγH+ p a R u 3 H                (13) dRv dt =γHμRθR p a R dQ dt =θRμQ+ u 1 S a + u 2 L+ u 3 H MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGdaWcaaGcbaqcLbsacaWGKbGaam4uaKqbaoaaBaaaleaajugibiaadggaaSqabaaakeaajugibiaadsgacaWG0baaaiabg2da9iaadkhacqGHsislcqaHXoqycaWGtbqcfa4aaSbaaSqaaKqzGeGaamyyaaWcbeaajugibiaadIeacqGHsislcqaH8oqBcaWGtbqcfa4aaSbaaSqaaKqzGeGaamyyaaWcbeaajugibiabgkHiTiaadwhajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaam4uaKqbaoaaBaaaleaajugibiaadggaaSqabaaakeaajuaGdaWcaaGcbaqcLbsacaWGKbGaamitaaGcbaqcLbsacaWGKbGaamiDaaaacqGH9aqpcqaHXoqycaWGtbqcfa4aaSbaaSqaaKqzGeGaamyyaaWcbeaajugibiaadIeacqGHsislcqaH8oqBcaWGmbGaeyOeI0IaeqOSdiMaamitaiabgkHiTiabes7aKjaadYeacqGHsislcaWG1bqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaadYeaaOqaaKqbaoaalaaakeaajugibiaadsgacaWGibaakeaajugibiaadsgacaWG0baaaiabg2da9iabek7aIjaadYeacqGHsislcqaH8oqBcaWGibGaeyOeI0Iaeq4SdCMaamisaiabgUcaRiaadchajuaGdaWgaaWcbaqcLbsacaWGHbaaleqaaKqzGeGaamOuaiabgkHiTiaadwhajuaGdaWgaaWcbaqcLbsacaaIZaaaleqaaKqzGeGaamisaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabodacaqGPaaakeaajuaGdaWcaaGcbaqcLbsacaWGKbGaamOuaiaadAhaaOqaaKqzGeGaamizaiaadshaaaGaeyypa0Jaeq4SdCMaamisaiabgkHiTiabeY7aTjaadkfacqGHsislcqaH4oqCcaWGsbGaeyOeI0IaamiCaKqbaoaaBaaaleaajugibiaadggaaSqabaqcLbsacaWGsbaakeaajuaGdaWcaaGcbaqcLbsacaWGKbGaamyuaaGcbaqcLbsacaWGKbGaamiDaaaacqGH9aqpcqaH4oqCcaWGsbGaeyOeI0IaeqiVd0MaamyuaiabgUcaRiaadwhajuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaam4uaKqbaoaaBaaaleaajugibiaadggaaSqabaqcLbsacqGHRaWkcaWG1bqcfa4aaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiaadYeacqGHRaWkcaWG1bqcfa4aaSbaaSqaaKqzGeGaaG4maaWcbeaajugibiaadIeaaaaa@CDA6@

The model parameters are

r = 4.25; µ = 0.00561; α = 0.002; β = 0.6; δ = 0.025; γ = 1.5; pa = 0.02

u1,u2,u3 are the control variables

where

  • r represents the recruitment rate of the population
  • µ is the natural mortality rate
  • α is the interaction rate among the susceptible and light drug users
  • β is the effective rate at which light users convert into heavy drug users
  • δ the removal rate from addiction without treatment
  • γ is the rate at which heavy addicts are being sent to rehabilitation for treatment
  • u1 is the awareness and educational programs
  • u2 is the family-based care
  • u3 represents the effectiveness of rehabilitation centers
Bifurcation analysis for problem 1

When bifurcation analysis with µ the bifurcation parameter was performed on the equations representing problem 1, a branch point was found a [Sa, L, H, Rv, Q, µ] values of (782.26, 0.0, 0, 0,0, 0.005433 ). Figure 1a shows the bifurcation diagram with this branch point.

MLNMPC for problem 1

The MNLMPC of problem 1, Q(t ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabqaOqaaKqzGeGaamyuaiaacIcacaWG0baaleqabeqcLbsacqGHris5aiaacMcaaaa@3CD8@ was maximized and resulted in a value of 2000; while H(t) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabqaOqaaKqzGeGaamisaiaacIcacaWG0bGaaiykaaWcbeqabKqzGeGaeyyeIuoaaaa@3CCF@ was minimized and resulted in a value of 0. The multiobjective optimal control problem involved the minimization of ( Q(t )2000 ) 2 +( H(t )0 ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOaqcfa4aaabqaOqaaKqzGeGaamyuaiaacIcacaWG0baaleqabeqcLbsacqGHris5aiaacMcacqGHsislcaaIYaGaaGimaiaaicdacaaIWaGaaiykaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaacIcajuaGdaaeabGcbaqcLbsacaWGibGaaiikaiaadshaaSqabeqajugibiabggHiLdGaaiykaiabgkHiTiaaicdacaGGPaqcfa4aaWbaaSqabeaajugibiaaikdaaaaaaa@5161@ the subject to the dynamic equation set representing this problem. This resulted in the Utopia point of 0 and the MNLMPC values of the control variables obtained were [u1, u2, u3] = [0.0004, 0.0405, 0.5362]. The MNLMPC profiles are shown in Figures 1a-1i.

Problem 2 Mushayabasa, et al. [4]

Equations representing problem 2

In this problem, the time-dependent variables are

  • Sv(t) susceptible individuals
  • I(t) light or occasional drug users
  • Iav(t) heavy drug users
  • Mv(t) mentally ill population and (individuals who suffer mental illness due to drug use,
  • Rv(t) detected illicit drug users

The equations that represent the drug addiction problem are

d S v dt =μ(1 u c )λ S v μ S v d I v dt =(1 u c )λ S v (α+γ v c +σ+μ+ψ) I v         (14) d I av dt =α I v (ρ v c +ϕ+μ+d) I av d M v dt =σ I v +ϕ I av (μ+ε v c +δ) M v d R v dt = v c (γI+ρ I av +ε M v )(μ+ω) R v λ=β( I v +k I av ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGdaWcaaGcbaqcLbsacaWGKbGaam4uaKqbaoaaBaaaleaajugibiaadAhaaSqabaaakeaajugibiaadsgacaWG0baaaiabg2da9iabeY7aTjabgkHiTiaacIcacaaIXaGaeyOeI0IaamyDaKqbaoaaBaaaleaajugibiaadogaaSqabaqcLbsacaGGPaGaeq4UdWMaam4uaKqbaoaaBaaaleaajugibiaadAhaaSqabaqcLbsacqGHsislcqaH8oqBcaWGtbqcfa4aaSbaaSqaaKqzGeGaamODaaWcbeaaaOqaaKqbaoaalaaakeaajugibiaadsgacaWGjbqcfa4aaSbaaSqaaKqzGeGaamODaaWcbeaaaOqaaKqzGeGaamizaiaadshaaaGaeyypa0JaaiikaiaaigdacqGHsislcaWG1bqcfa4aaSbaaSqaaKqzGeGaam4yaaWcbeaajugibiaacMcacqaH7oaBcaWGtbqcfa4aaSbaaSqaaKqzGeGaamODaaWcbeaajugibiabgkHiTiaacIcacqaHXoqycqGHRaWkcqaHZoWzcaWG2bqcfa4aaSbaaSqaaKqzGeGaam4yaaWcbeaajugibiabgUcaRiabeo8aZjabgUcaRiabeY7aTjabgUcaRiabeI8a5jaacMcacaWGjbqcfa4aaSbaaSqaaKqzGeGaamODaaWcbeaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeinaiaabMcaaOqaaKqbaoaalaaakeaajugibiaadsgacaWGjbqcfa4aaSbaaSqaaKqzGeGaamyyaiaadAhaaSqabaaakeaajugibiaadsgacaWG0baaaiabg2da9iabeg7aHjaadMeajuaGdaWgaaWcbaqcLbsacaWG2baaleqaaKqzGeGaeyOeI0Iaaiikaiabeg8aYjaadAhajuaGdaWgaaWcbaqcLbsacaWGJbaaleqaaKqzGeGaey4kaSIaeqy1dyMaey4kaSIaeqiVd0Maey4kaSIaamizaiaacMcacaWGjbqcfa4aaSbaaSqaaKqzGeGaamyyaiaadAhaaSqabaaakeaajuaGdaWcaaGcbaqcLbsacaWGKbGaamytaKqbaoaaBaaaleaajugibiaadAhaaSqabaaakeaajugibiaadsgacaWG0baaaiabg2da9iabeo8aZjaadMeajuaGdaWgaaWcbaqcLbsacaWG2baaleqaaKqzGeGaey4kaSIaeqy1dyMaamysaKqbaoaaBaaaleaajugibiaadggacaWG2baaleqaaKqzGeGaeyOeI0IaaiikaiabeY7aTjabgUcaRiabew7aLjaadAhajuaGdaWgaaWcbaqcLbsacaWGJbaaleqaaKqzGeGaey4kaSIaeqiTdqMaaiykaiaad2eajuaGdaWgaaWcbaqcLbsacaWG2baaleqaaaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaiaadkfajuaGdaWgaaWcbaqcLbsacaWG2baaleqaaaGcbaqcLbsacaWGKbGaamiDaaaacqGH9aqpcaWG2bqcfa4aaSbaaSqaaKqzGeGaam4yaaWcbeaajugibiaacIcacqaHZoWzcaWGjbGaey4kaSIaeqyWdiNaamysaKqbaoaaBaaaleaajugibiaadggacaWG2baaleqaaKqzGeGaey4kaSIaeqyTduMaamytaKqbaoaaBaaaleaajugibiaadAhaaSqabaqcLbsacaGGPaGaeyOeI0IaaiikaiabeY7aTjabgUcaRiabeM8a3jaacMcacaWGsbqcfa4aaSbaaSqaaKqzGeGaamODaaWcbeaaaOqaaKqzGeGaeq4UdWMaeyypa0JaeqOSdiMaaiikaiaadMeajuaGdaWgaaWcbaqcLbsacaWG2baaleqaaKqzGeGaey4kaSIaam4AaiaadMeajuaGdaWgaaWcbaqcLbsacaWGHbGaamODaaWcbeaajugibiaacMcaaaaa@053F@

And the parameter values are,

ω = 0.3; µ = 0.02; k = 1.25; β = 0.35; γ = 0.1; ρ = 0.35; ε = 0.6; α = 0.01; ψ = 0.03; δ = 0.14; d = 0.2; σ= 0.05;ϕ = 0.09;

uc, vc are the control variables

Here,

  • α represents the rate at which light drug users become heavy drug users
  • γ, ε, ρ the rates of detection and rehabilitation of individuals in classes Iv, Mv, Iav
  • σ, φ the rates at which light and heavy illicit drug users develop mental illness
  • ψ, d the permanent exit rates of light and heavy users
  • δ mentally ill individuals who permanently exit the model because of death
  • ω the rate at which individuals recover as a result of rehabilitation
  • β the strength of interactions between susceptible individuals and illicit drug users
  • uc represents the reduction of the intensity of “social influence”
  • vc models the effort on the detection of illicit drug users
Bifurcation analysis for problem 2

When bifurcation analysis with α MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ as the bifurcation parameter was performed on the equations representing problem 2, a branch point was found at [Sv, Iv, Iav, Mv, Rv, α] = [1.0, 0.0, 0.0, 0.0, 0.0, 0.430112]. The bifurcation diagram is shown in Figure 2a.

MLNMPC for problem 2

For the MNLMPC of problem 2, I v (t ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabqaOqaaKqzGeGaamysaKqbaoaaBaaaleaajugibiaadAhaaSqabaqcLbsacaGGOaGaamiDaaWcbeqabKqzGeGaeyyeIuoacaGGPaaaaa@3FAE@ and I av (t ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabqaOqaaKqzGeGaamysaKqbaoaaBaaaleaajugibiaadggacaWG2baaleqaaKqzGeGaaiikaiaadshaaSqabeqajugibiabggHiLdGaaiykaaaa@4094@ were minimized individually and both the minimizations resulted in a value of 0. The multiobjective optimal control problem involved the minimization of ( I v (t ) ) 2 +( I av (t ) ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOaqcfa4aaabqaOqaaKqzGeGaamysaKqbaoaaBaaaleaajugibiaadAhaaSqabaqcLbsacaGGOaGaamiDaaWcbeqabKqzGeGaeyyeIuoacaGGPaGaaiykaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaacIcajuaGdaaeabGcbaqcLbsacaWGjbqcfa4aaSbaaSqaaKqzGeGaamyyaiaadAhaaSqabaqcLbsacaGGOaGaamiDaaWcbeqabKqzGeGaeyyeIuoacaGGPaGaaiykaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaaaa@527D@ the subject to the dynamic equation set representing this problem. This resulted in the Utopia point of 0 and the MNLMPC values of the control variables obtained were [u1, u2, u3] = [0.0004, 0.0405, 0.5362]. The various MNLMPC profiles are shown in Figures 2b-2h.

Two problems involving drug addiction models have been shown to exhibit branch points leading to two different solution branches. In both cases, it is computationally shown that the MNLMPC calculations would converge to the Utopia solution as the theoretical analysis predicts.

Conclusions and future work

Branch points leading to two separate branches were exhibited when bifurcation analysis was performed on the two drug addiction models considered in this paper. The rigorous analysis demonstrated that the presence of the branch points would result in the MNLMPC calculations converging to the Utopia solution. This fact was also computationally validated. The presence of the branch points indicates that there are two paths that the drug abuse dynamics can take. The attainment of the Utopia point shows that the number of light and heavy drug users can both be minimized while maximizing the number of users who do not take drugs. Future work would involve using drug addiction models with time delay.

Data availability statement

All data used is presented in the paper.

  1. Bae Y. Chaotic dynamics in tobacco’s addiction model. Int J Fuzzy Logic Intell Syst. 2014;14(4):322-331. Available from: https://doi.org/10.5391/IJFIS.2014.14.4.322
  2. Mushayabasa S, Bhunu CP. Epidemiological consequences of non-compliance to HCV therapy among intravenous drug users. Int J Res Rev Appl Sci. 2011;8(3):288-295. Available from: https://www.researchgate.net/profile/Steady-Mushayabasa/publication/247967360_Epidemiological_consequences_of_non-compliance_to_HCV_therapy_among_intravenous_drug_users/links/00b7d5285d94cc6830000000/Epidemiological-consequences-of-non-compliance-to-HCV-therapy-among-intravenous-drug-users.pdf
  3. Mushayabasa S. The role of optimal intervention strategies on controlling excessive alcohol drinking and its adverse health effects. J Appl Math. 2015;2015:238784. Available from: https://doi.org/10.1155/2015/238784
  4. Mushayabasa S, Tapedzesa G. Modeling illicit drug use dynamics and its optimal control analysis. Comput Math Methods Med. 2015;2015:383154. Available from: https://doi.org/10.1155/2015/383154
  5. Hasan M, Shahin ASM. Drug rehabilitation center based survey on drug dependence in Dhaka city. Update Dent Coll J. 2013;3(1):32-36. Available from: http://dx.doi.org/10.3329/updcj.v3i1.17982
  6. Islam MA, Biswas MHA. Mathematical analysis of dynamic model of drug addiction in Bangladesh. Abstr Proc Int Conf Adv Comput Math. 2017. Department of Mathematics, University of Dhaka, Bangladesh. Available from:
  7. Islam MA, Biswas MH. Optimal control strategy applied to a dynamic model of drug abuse incident for reducing its adverse effects. 2020;05. Available from: https://doi.org/10.1101/2020.05.02.20088468
  8. Lavi O, Gottesman MM, Levy D. The dynamics of drug resistance: A mathematical perspective. Drug Resist Updat. 2012;15(1-2):90-97. Available from: https://doi.org/10.1016/j.drup.2012.01.003
  9. Nyabadza F, Njagarah JBH, Smith RJ. Modelling the dynamics of crystal meth (‘Tik’) abuse in the presence of drug-supply chains in South Africa. Bull Math Biol. 2013;75(1):24-48. Available from: https://link.springer.com/article/10.1007/s11538-012-9790-5
  10. White E, Comiskey C. Heroin epidemics, treatment and ODE modeling. Math Biosci. 2007;208(1):312-324. Available from: https://doi.org/10.1016/j.mbs.2006.10.008
  11. Isa RS, Emmanuel S, Danat NT, Abubakar SS, Hwere TS, Garba U. Mathematical modeling of illicit drug use dynamics examining the impact of recycling recovered individuals into the population. Appl Math Comput Intell (AMCI). 2024;13(2):74-99. Available from: https://doi.org/10.58915/amci.v13i2.226
  12. Donoghoe M. Illicit drugs. In: Murray CJL, Lopez AD, editors. Quantifying Global Health Risks: The Burden of Disease Attributable to Selected Risk Factors. Cambridge, Mass: Harvard University Press; 1996.
  13. Murray RM, Morrison PD, Henquet C, Di Forti M. Cannabis, the mind, and society: the hash realities. Nat Rev Neurosci. 2007;8(11):885-895. Available from: http://dx.doi.org/10.1038/nrn2253
  14. Pluddemann A, Dada S, Parry C. Monitoring alcohol and drug abuse trends in South Africa, South Africa Community Epidemiology Network on Drug Use (SACENDU). SACENDU Res Brief. 2008;11(2).
  15. McGinty EE, Daumit GL. Integrating mental health and addiction treatment into general medical care: the role of policy. Psychiatr Serv. 2020;71:1163–1169. Available from: https://doi.org/10.1176/appi.ps.202000183
  16. Hooker SA, Sherman MD, Lonergan-Cullum M, Sattler A, Liese BS, Justesen K, et al. Mental health and psychosocial needs of patients being treated for opioid use disorder in a primary care residency clinic. J Prim Care Community Health. 2020;11:2150132720932017. Available from: https://doi.org/10.1177/2150132720932017
  17. Butler A, Nicholls T, Samji H, Fabian S, Lavergne MR. Prevalence of mental health needs, substance use, and co-occurring disorders among people admitted to prison. Psychiatr Serv. 2021;73:737–744. Available from: https://doi.org/10.1176/appi.ps.202000927
  18. Scott CK, Dennis ML, Grella CE, Mischel AF, Carnevale J. The impact of the opioid crisis on U.S. state prison systems. Health Justice. 2021;9:17. Available from: https://doi.org/10.1186/s40352-021-00143-9
  19. Chang JE, Franz B, Pagán JA, Lindenfeld Z, Cronin CE. Substance use disorder program availability in safety-net and non-safety-net hospitals in the US. JAMA Netw Open. 2023;6:e2331243. Available from: https://doi.org/10.1001/jamanetworkopen.2023.31243
  20. Paquette CE, Daughters SB, Witkiewitz K. Expanding the continuum of substance use disorder treatment: nonabstinence approaches. Clin Psychol Rev. 2022;91:102110. Available from: https://doi.org/10.1016/j.cpr.2021.102110
  21. Akanni JO, Olaniyi S, Akinpelu FO. Global asymptotic dynamics of a nonlinear illicit drug use system. J Appl Math Comput. 2021;66:39-60. Available from: https://doi.org/10.1007/s12190-020-01423-7
  22. A, A., Akanni JO. Dynamics of illicit drug use and banditry population with optimal control strategies and cost-effectiveness analysis. Comput Appl Math. 2022;41:Paper No. 53, 37. Available from: https://doi.org/10.1007/s40314-022-01760-2
  23. Olaniyi S, Akanni JO, Adepoju OA. Optimal control and cost-effectiveness analysis of an illicit drug use population dynamics. J Appl Nonlinear Dyn. 2023;12:133-146. Available from: https://www.lhscientificpublishing.com/Journals/articles/DOI-10.5890-JAND.2023.03.010.aspx
  24. Dhooge A, Govaerts W, Kuznetsov AY. MATCONT: A Matlab package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw. 2003;29(2):141-164. Available from: https://doi.org/10.1145/779359.779362
  25. Dhooge A, Govaerts W, Kuznetsov YA, Mestrom W, Riet AM. CL_MATCONT; A continuation toolbox in Matlab. 2004. Available from: http://dx.doi.org/10.1145/952532.952567
  26. Kuznetsov YA. Elements of applied bifurcation theory. New York: Springer; 1998. Available from: https://www.ma.imperial.ac.uk/~dturaev/kuznetsov.pdf
  27. Kuznetsov YA. Five lectures on numerical bifurcation analysis. Utrecht; 2009.
  28. Govaerts WJF. Numerical Methods for Bifurcations of Dynamical Equilibria. Philadelphia: SIAM; 2000. Available from: https://epubs.siam.org/doi/10.1137/1.9780898719543
  29. Sridhar LN. Elimination of oscillations in fermentation processes. AIChE J. 2011;57(9):2397-2405. Available from: https://doi.org/10.1002/aic.12457
  30. Flores-Tlacuahuac A, Morales P, Riveral Toledo M. Multiobjective nonlinear model predictive control of a class of chemical reactors. Ind Eng Chem Res. 2012;17:5891-5899. Available from: https://doi.org/10.1021/ie201742e
  31. Sridhar LN. Multiobjective optimization and nonlinear model predictive control of the continuous fermentation process involving Saccharomyces cerevisiae. Biofuels. 2022;13:249-264. Available from: https://doi.org/10.1080/17597269.2019.1674000
  32. Miettinen KM. Nonlinear Multiobjective Optimization. Kluwer International Series; 1999. Available from: https://books.google.co.in/books/about/Nonlinear_Multiobjective_Optimization.html?id=ha_zLdNtXSMC&redir_esc=y
  33. Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, Siirola JD. Pyomo – Optimization Modeling in Python. 2nd ed. 67;2017. Available from: https://link.springer.com/book/10.1007/978-3-319-58821-6
  34. Biegler LT. An overview of simultaneous strategies for dynamic optimization. Chem Eng Process Process Intensif. 2007;46:1043-1053. Available from: https://doi.org/10.1016/j.cep.2006.06.021
  35. Wächter A, Biegler L. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program. 2006;106:25-57. Available from: https://doi.org/10.1007/s10107-004-0559-y
  36. Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global optimization. Math Program. 2005;103(2):225-249. Available from: https://link.springer.com/article/10.1007/s10107-005-0581-8
 

Help ?