Postoperative Atrial Fibrillation and its association with the Atrial Substrate and the electrophysiological properties of the Atrial Myocardium

Main Article Content

Osmar Antonio Centurión*
Fabiola Rodríguez
Karina Scavenius
Luis Miño
Orlando Sequeira

Downloads

Download data is not yet available.

Article Details

Centurión, O. A., Rodríguez, F., Scavenius, K., Miño, L., & Sequeira, O. (2017). Postoperative Atrial Fibrillation and its association with the Atrial Substrate and the electrophysiological properties of the Atrial Myocardium. Journal of Cardiovascular Medicine and Cardiology, 4(2), 029–032. https://doi.org/10.17352/2455-2976.000046
Editorial(s)

Copyright (c) 2017 Centurión OA, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Licensing and protecting the author rights is the central aim and core of the publishing business. Peertechz dedicates itself in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. Peertechz licensing terms are formulated to facilitate reuse of the manuscripts published in journals to take maximum advantage of Open Access publication and for the purpose of disseminating knowledge.

We support 'libre' open access, which defines Open Access in true terms as free of charge online access along with usage rights. The usage rights are granted through the use of specific Creative Commons license.

Peertechz accomplice with- [CC BY 4.0]

Explanation

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.

With this license, the authors are allowed that after publishing with Peertechz, they can share their research by posting a free draft copy of their article to any repository or website.
'CC BY' license observance:

License Name

Permission to read and download

Permission to display in a repository

Permission to translate

Commercial uses of manuscript

CC BY 4.0

Yes

Yes

Yes

Yes

The authors please note that Creative Commons license is focused on making creative works available for discovery and reuse. Creative Commons licenses provide an alternative to standard copyrights, allowing authors to specify ways that their works can be used without having to grant permission for each individual request. Others who want to reserve all of their rights under copyright law should not use CC licenses.

Stamboul K, Zeller M, Fauchier L, Gudjoncik A, Buffet P, et al. (2014) Incidence and prognostic significance of silent atrial fibrillation in acute myocardial infarction. Inter J Cardiol 174: 611-617. Link: https://goo.gl/KsxXma

Echahidi N, Pibarot P, O'Hara G, Mathieu P (2008) Mechanisms, prevention, and treatment of atrial fibrillation after cardiac surgery. J Am Coll Cardiol 51: 793-801. Link: https://goo.gl/Rjqzqy

Willems S, Weiss C, Meinertz T (1997) Tachyarrhythmias following coronary artery bypass graft surgery: epidemiology, mechanisms, and current therapeutic strategies. Thorac Cardiovasc Surg 45: 232-237. Link: https://goo.gl/H35RKy

Ommen SR, Odell JA, Stanton MS (1997) Atrial arrhythmias after cardiothoracic surgery. N Engl J Med 336: 1429-1434. Link: https://goo.gl/uF94rj

Creswell LL, Schuessler RB, Rosenbloom M, Cox JL (1993) Hazards of postoperative atrial arrhythmias. Ann Thorac Surg 56: 539-549. Link: https://goo.gl/bVRddG

Lapar DJ, Speir AM, Crosby IK, Fonner E Jr, Brown M, et al. (2014) Postoperative atrial fibrillation significantly increases mortality, hospital readmission, and hospital costs. Ann Thorac Surg 98: 527-533. Link: https://goo.gl/izjnv4

Flaker GC, Belew K, Beckman K, Vidaillet H, Kron J, et al. (2005) Asymptomatic atrial fibrillation: demographic features and prognostic information from the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Am Heart J 149: 657-663. Link: https://goo.gl/CC51cn

Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, et al. (2012) Subclinical atrial fibrillation and the risk of stroke. N Engl J Med 366: 120-129. Link: https://goo.gl/pUUH23

Bidar E, Maesen B, Nieman F, Verheule S, Schotten U, et al. (2014) A prospective randomized controlled trial on the incidence and predictors of late-phase postoperative atrial fibrillation up to 30 days and the preventive value of biatrial pacing. Heart Rhythm 11: 1156-1162. Link: https://goo.gl/iBboVy

Nisanoglu V, Erdil N, Aldemir M, Ozgur B, Berat Cihan H, et al. (2007) Atrial fibrillation after coronary artery bypass grafting in elderly patients: incidence and risk factor analysis. Thorac Cardiovasc Surg 55: 32-38. Link: https://goo.gl/hSWMYP

Hernández-Romero D, Vílchez JA, Lahoz A, Romero-Aniorte AI, Orenes-Piñero E, et al. (2014) High sensitivity troponin T as a biomarker for the development of atrial fibrillation after cardiac surgery. Eur J Cardio Thorac Surg 45: 733-738. Link: https://goo.gl/5XHxwJ

Dittrich HC, Pearce LA, Asinger RW, McBride R, Webel R, et al. (1999) Left atrial diameter in nonvalvular atrial fibrillation: an echocardiographic study. Am Heart J 137: 494-499. Link: https://goo.gl/SQ7QK5

Manning WJ, Gelfand EV (2006) Left atrial size and postoperative atrial fibrillation: the volume of evidence suggests it is time to break an old habit. J Am Coll Cardiol 48: 787-789. Link: https://goo.gl/xTRtUR

El-Chami MF, Kilgo P, Thourani V, Delurgio DB, Guyton RA, et al. (2010) New-onset atrial fibrillation predicts long-term mortality after coronary artery bypass graft. J Am Coll Cardiol 55: 1370-1376. Link: https://goo.gl/C6Z6Tn

Yadava M, Hughey AB, Crawford TC (2014) Postoperative atrial fibrillation: incidence, mechanisms, and clinical correlates. Cardiol Clin 32: 627- 636. Link: https://goo.gl/DtyRZp

Arakawa M, Miyata H, Uchida N, Motomura N, Katayama A, et al. (2015) Postoperative atrial fibrillation after thoracic aortic surgery. Ann Thorac Surg 99: 103-108. Link: https://goo.gl/ZBMMXV

Aydin U, Yilmaz M, Duzyol C, Ata Y, Turk T, et al. (2015) Efficiency of postoperative statin treatment for preventing new-onset postoperative atrial fibrillation in patients undergoing isolated coronary artery bypass grafting: A prospective randomized study. Anatol J Cardiol 15: 491-495. Link: https://goo.gl/VCHJuE

Chung MK, Martin DO, Sprecher D, Wazni O, Kanderian A, et al. (2001) C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104: 2886-2891. Link: https://goo.gl/8r4po3

Spach, Dober PC, Anderson PA (1989) Multiple regional differences in cellular properties that regulate repolarization and contraction in the right atrium of adult and newborn dogs. Circ Res 65: 1594-1611. Link: https://goo.gl/4WuCK3

Spach MS, MillerWT, Dolber PC, Kootsey JM, Sommer JR, et al. (1952) The functional role of structural complexities in the propagation of depolarization in the atrium of the dog: cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ Res 50: 175-191. Link: https://goo.gl/9xkSck

Spach MS, Dober PC (1986) Relating extracellular potentials and their derivatives to anisotropic propagation at microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res 58: 356-371. Link: https://goo.gl/VCKCEB

Lev M (1954) Aging changes in the human sinoatrial node. J Geront 9: 1-9. Link: https://goo.gl/myAgV2

Davies MJ, Pomerance A (1972) Quantitative study of aging changes in the human sinoatrial node and internodal tracts. Br Heart J 34: 150-152. Link: https://goo.gl/n7vgRm

Hudson REB (1960) The human pacemarker and its pathology. Br Heart J 22: 153-167. Link: https://goo.gl/oeccLN

Centurión OA, Isomoto S, Shimizu A, Konoe A, Kaibara M, et al. (2003) The effects of aging on atrial endocardial electrograms in patients with paroxysmal atrial fibrillation. Clin Cardiol 26: 435-438. Link: https://goo.gl/jgxS3t

Centurión OA, Shimizu A, Isomoto S, Konoe A, Kaibara M, et al. (2005) Influence of advancing age on fractionated right atrial endocardial electrograms. Am J Cardiol 96: 239-242. Link: https://goo.gl/XdoyHr

Centurión OA, Fukatani M, Konoe A, Tanigawa M, Shimizu A, et al. (1992) Different distribution of abnormal endocardial electrograms within the right atrium in patients with sick sinus syndrome. Br Heart J 68: 596-600. Link: https://goo.gl/bKd1YV

Centurión OA, Isomoto S, Fukatani M, Shimizu A, Konoe A, et al. (1993) Relationship between atrial conduction defects and fractionated atrial endocardial electrograms in patients with sick sinus syndrome. PACE 16: 2022-2033. Link: https://goo.gl/556F7T

Centurión OA, Shimizu A, Isomoto S, Konoe A, Hirata T, et al. (1994) Repetitive atrial firing and fragmented atrial activity elicited by extrastimuli in the sick sinus syndrome with and without abnormal atrial electrograms. Am J Med Sci 307: 247-254. Link: https://goo.gl/J5tFLH

Landstrom M (2010) The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol 42: 585-589. Link: https://goo.gl/s1A9Sc

Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, et al. (2008) TRAF6 mediates Smadindependent activation of JNK and p38 by TGF-beta. Mol Cell 31: 918-924. Link: https://goo.gl/L2CJ4k

Ko WC, Hong CY, Hou SM, Lin CH, Ong ET, et al. (2011) Elevated expression of connective tissue growth factor in human atrial fibrillation and angiotensin IItreated cardiomyocytes. Circ J 75: 1592-1600. Link: https://goo.gl/ZTMb4q

He X, Gao X, Peng L, Wang S, Zhu Y, et al. (2011) Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadiamediated downregulation of Smad7. Circ Res 108: 164-175. Link: https://goo.gl/1m7W9q

Gu J, Liu X, Wang QX, Tan HW, Guo M, et al. (2012) Angiotensin II increases CTGF expression via MAPKs/TGF-beta1/TRAF6 pathway in atrial fibroblasts. Exp Cell Res 318: 2105-2115. Link: https://goo.gl/8cMMWT

Zhang D, Chen X, Wang Q, Wu S, Zheng Y, et al. (2017) Role of the MAPKs/TGF?1/TRAF6 signaling pathway in postoperative atrial fibrillation. PLoS ONE 12: e0173759. Link: https://goo.gl/6W23R7

Luo W, Huaibin W, Wenjun Z, Jie T, Xiaokang O, et al. (2017) Predictors of Postoperative Atrial Fibrillation after Isolated On-Pump Coronary Artery Bypass Grafting in Patients ?60 Years Old. Heart Surg Forum 20: E038-E042. Link: https://goo.gl/WWJ3rf

Perrier S, Meyer N, Hoang Minh T, Announe T, Bentz J, et al. (2017) Predictors of Atrial Fibrillation After Coronary Artery Bypass Grafting: A Bayesian Analysis. Ann Thorac Surg 103: 92-97. Link: https://goo.gl/2RmtqX

Kotova S, Wang M, Lothrop K, Grunkemeier G, Merry HE, et al. (2017) CHADS2 Score Predicts Postoperative Atrial Fibrillation in Patients Undergoing Elective Pulmonary Lobectomy. Ann Thorac Surg. 103: 1566-1572. Link: https://goo.gl/9mqrUz

Jesel L, Barraud J, Lim HS, Marzak H, Messas N, et al. (2017) Early and late atrial arrhythmias after lung transplantation: Incidence, predictive factors and impact on mortality. Circ J 81: 660-667. Link: https://goo.gl/2t4Cbv

Centurión OA (2009) Clinical implications of the P wave duration and dispersion: Relationship between atrial conduction defects and abnormally prolonged atrial endocardial electrograms. Int J Cardiol 134: 6-8. Link: https://goo.gl/z8Aw7g

Aytemir K, Ozer N, Atalar E, Sade E, Aksöyek S, et al. (2000) P wave dispersion on 12-lead electrocardiography in patients with paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 23: 1109-1112. Link: https://goo.gl/Gk4rXp

Dilaveris PE, Gialafos JE (2001) P-wave dispersion: a novel predictor of paroxysmal atrial fibrillation. Ann Noninvasive Electrocardiol 6: 159-165. Link: https://goo.gl/qEM1nr

Lazzeroni D, Parati G, Bini M, Piazza P, Ugolotti PT et al. (2016) P-wave dispersion predicts atrial fibrillation following cardiac surgery. Int J Cardiol 203: 131-133. Link: https://goo.gl/h3itkj

Yoshizawa T, Niwano S, Niwano H, Igarashi T, Fujiishi T, et al. (2014) Prediction of new onset atrial fibrillation through P wave analysis in 12 lead ECG. Int Heart J 55: 422-427. Link: https://goo.gl/nnpas4

Ertem AG, Erdo_gan M, Keles¸ T, Durmaz T, Bozkurt E (2015) P-wave dispersion and left ventricular diastolic dysfunction in hypertension. Anatol J Cardiol 15: 78-79.

Kizilirmak F, Demir GG, Gokdeniz T, Gunes HM, Cakal B, et al. (2016) Changes in electrocardiographic P wave parameters after Cryoballoon ablation and their association with atrial fibrillation recurrence. Ann Noninvasive Electrocardiol 21: 580-587. Link: https://goo.gl/4E1Q9M

Kawamura M, Scheinman MM, Lee RJ, Badhwar N (2015) Left atrial appendage ligation in patients with atrial fibrillation leads to a decrease in atrial dispersion. J Am Heart Assoc 4: e001581. Link: https://goo.gl/a7dLTX

Badhwar N, Lakkireddy D, Kawamura M, Han FT, Iyer SK, et al. (2015) Sequential percutaneous LAA ligation and pulmonary vein isolation in patients with persistent AF: initial results of a feasibility study. J Cardiovasc Electrophysiol 26: 608-614. Link: https://goo.gl/bwzvBq