Relation of hs-CRP and Glycogen phosphorylase BB in Acute Myocardial Infarction Patients

Main Article Content

Neelima singh
Chanchal Garg
Puneet Rastogi
Rakesh Shah
Vedika Rathore
Roshan Kumar Mahat
Prerna Vyas Gokhle

Abstract



Background:Inflammation has important role in the pathophysiology of atherosclerosis and acute myocardial infraction and hs-CRP is an inflammatory marker. GPBB is a marker of myocardial necrosis or myocardial ischemia i.e. the initial phase of AMI. The aim of this study was to know the levels of GPB and the relation between hs-CRP and GPBB in AMI patients.


Materials & methods: This study was conducted in the Cardiology of J.A. Hospital and Department of biochemistry, G.R. Medical College, Gwalior. Patients were admitted with severe chest pain out of which 100 were included in this study. 50 normal healthy individuals were also selected. Blood samples were collected at the admission time for the analysis of hs-CRP and GPBB. All patients underwent thorough clinical examination and investigations. Estimation of GPBB and hs-CRP were done by ELISA method and other routine parameters done by enzymatic method.


Results: The mean level of GPBB in patients was 46.92ng/mL while in controls it was 13.88ng/mL. The mean level of hs-CRP in patients was 4.38mg/L while in controls it was 1.34mg/L. There was highly significant difference of GPBB and hs-CRP in control group and AMI group. The finding of results showed that hs-CRP and GPBB was positively correlated. The levels of FBG, Triglyceride, Cholesterol, LDL, and VLDL were significantly increased and HDL was decreased in AMI group when compare controls.


Conclusion: Our results demonstrate that there was positive correlation of hs-CRP and GPBB in AMI patients. So along with GPBB, hs-CRP is also additional marker of myocardial ischemia and AMI.



Downloads

Download data is not yet available.

Article Details

singh, N., Garg, C., Rastogi, P., Shah, R., Rathore, V., Mahat, R. K., & Gokhle, P. V. (2020). Relation of hs-CRP and Glycogen phosphorylase BB in Acute Myocardial Infarction Patients. Journal of Cardiovascular Medicine and Cardiology, 7(3), 272–275. https://doi.org/10.17352/2455-2976.000151
Research Article(s)

Copyright (c) 2020 Natarajan R.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Licensing and protecting the author rights is the central aim and core of the publishing business. Peertechz dedicates itself in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. Peertechz licensing terms are formulated to facilitate reuse of the manuscripts published in journals to take maximum advantage of Open Access publication and for the purpose of disseminating knowledge.

We support 'libre' open access, which defines Open Access in true terms as free of charge online access along with usage rights. The usage rights are granted through the use of specific Creative Commons license.

Peertechz accomplice with- [CC BY 4.0]

Explanation

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.

With this license, the authors are allowed that after publishing with Peertechz, they can share their research by posting a free draft copy of their article to any repository or website.
'CC BY' license observance:

License Name

Permission to read and download

Permission to display in a repository

Permission to translate

Commercial uses of manuscript

CC BY 4.0

Yes

Yes

Yes

Yes

The authors please note that Creative Commons license is focused on making creative works available for discovery and reuse. Creative Commons licenses provide an alternative to standard copyrights, allowing authors to specify ways that their works can be used without having to grant permission for each individual request. Others who want to reserve all of their rights under copyright law should not use CC licenses.

Kasap S, Gonenc A, Sener DE, Hisar I (2007) Serum Cardiac Markers in Patients with Acute Myocardial Infarction: Oxidative Stress, C-reactive protein and N-terminal probrain natriuretic peptide. J Clin Biochem Nutr 41: 50-57. Link: https://bit.ly/3bbgwHx

Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, et al. (2018) Fourth Universal Definition of Myocardial Infarction. J Am Coll Cardiol 72: 2231-2264. Link: https://bit.ly/2EOm1QA

Gupta S, Alagona P (2008) Troponins: not always a myocardial infarction. Am J Med 121: e25. Link: https://bit.ly/3gNuLU5

Chen Y, Tao Y, Zhang L, Xu W, Zhou X (2019) Diagnostic and prognostic value of biomarkersin acute myocardial infarction. Postgrad Med J 95: 210-216. Link: https://bit.ly/3bbVUis

Wu AH, Feng YJ, Contois JH, Pervaiz S (1996) Comparison of myoglobin, creatine kinase-MB, and cardiac troponin I for diagnosis of acute myocardial infarction. Ann Clin Lab Sci 26: 291-300. Link: https://bit.ly/34Monu4

Nigam PK (2007) Biochemical markers of myocardial injury. Indian J Clin Biochem 22:10–17. Link: https://bit.ly/3gJa8Zo

Yousuf O, Mohanty BD, Martin SS, Joshi PH, Blaha MJ, et al. (2013) High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol 62: 397-408. Link: https://bit.ly/31IMB6M

Hamzic Mehmedbasic A (2016) Inflammatory cytokines as risk factors for mortality after acute cardiac events. Med Arch 70: 252–255. Link: https://bit.ly/2ETtlKs

Wang J, Tang B, Liu X, Wang H, Xu D, et al. (2015) Increased monomeric CRP levels in acute myocardial infarction: a possible new and specific biomarker for diagnosis and severity assessment of disease. Atherosclerosis 239: 343-349. Link: https://bit.ly/31JdBCM

Rabitzsch G, Mair J, Lechleitner P, Noll F, Hofmann U, et al. (1995) Immunoenzymometric assay of human glycogen phosphorylase isoenzyme BB in diagnosis of ischemic myocardial injury. Clin Chem 41: 966-978. Link: https://bit.ly/2YRMYKm

Krause EG, Rabitzsch G, Noll F, Mair J, Puschendorf B (1996) Glycogen phosphorylase isoenzyme BB in diagnosis of myocardial ischaemic injury and infarction. Mol Cell Biochem 160: 289-295. Link: https://bit.ly/2EJohbH

Mair J (1997) Progress in myocardial damage detection: new biochemical markers for clinicians. Crit Rev Clin Lab Sci 34: 1-66. Link: https://bit.ly/3gM2mxM

Singh N, Rathore V, Mahat RK, Rastogi P (2018) Glycogen Phosphorylase BB: A more Sensitive and Specific Marker than Other Cardiac Markers for Early Diagnosis of Acute Myocardial Infarction. Ind J Clin Biochem 33: 356–360. Link: https://bit.ly/31JsGV7

Cubranic Z, Madzar Z, Matijevic S, Dvornik S, Fisic E, et al. (2012) Diagnostic accuracy of heart fatty acid binding protein (H-FABP) and glycogen phosphorylase isoenzyme BB (GPBB) in diagnosis of acute myocardial infarction in patients with acute coronary syndrome. Biochem Med (Zagreb) 22: 225-236. Link: https://bit.ly/3lxCvgC

Bozkurt S, Kaya EB, Okutucu S, Aytemir K, Coskun F, et al. (2011) The diagnostic and prognostic value of first hour glycogen phosphorylase isoenzyme BB level in acute coronary syndrome. Cardiol J 18: 496–502. Link: https://bit.ly/2YO4dvY

Serdar Z, Altin A, Serdar A, Bilgili G, Sarandol E, et al. (2012) Glycogen phosphorylase isoenzyme BB in early diagnosis of acute coronary syndrome. Nobel Medicus 8: 65-72. Link: https://bit.ly/2DdNGKh

Lillpopp L, Tzikas S, Ojeda F, Munzel T, Blakenberg S, et al. (2012) Prognostic information of glycogen phosphorylase isoenzyme BB in patients with suspected acute coronary syndrome. Am J Cardiol 110:1225-1230. Link: https://bit.ly/2EP8J6p

Peetz D, Post F, Schinzel H, Schweigert R, Schollmayer C, et al. (2005) Glycogen phosphorylase BB in acute coronary syndromes. Clin Chem Lab Med 43:1351-1358. Link: https://bit.ly/3biUnY8

Beaudeux JL, Giral P, Bruckert E, Foglietti MJ, Chapman MJ (2004) Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clin Chem Lab Med 42: 121-131. Link: https://bit.ly/32yzOCM

Wang XH, Liu SQ, Wang YL, Jin Y (2014) Correlation of serum high-sensitivity C-reactive protein and interleukin-6 in patients with acute coronary syndrome. Genet Mol Res 13: 4260-4266. Link: https://bit.ly/3lvDu0V

Acharya A, Sahu JK, Sharma SK, Mandal MK (2017) Serial Measurement of High Sensitive C Reactive Protein Levels of Patients Having Acute Chest Pain –Study in a Tertiary Care Centre of Western Odisha. JMSCR 5: 20243-20246. Link: https://bit.ly/3juwCz7

Basha SJ, Anil Kumar M, Lakshmi Prasad KK (2016) Role of HSCRP in Detecting Myocardial Infarction. IOSR-JDMS 15: 19-22.

Badiger RH, Dinesha V, Hosalli A, Ashwin SP (2014) hsC-reactive protein as an indicator for prognosis in acute myocardial infarction. J Sci Soc 41: 118-121. Link: https://bit.ly/3lFXLRJ

Aseri ZA, Habib SS, Alhomida SA, Khan HA (2014) Relationship of high sensitivity C-reactive protein with cardiac biomarkers in patients presenting with acute coronary syndrome. J Coll Physicians Surg Pak 24: 387-391. Link: https://bit.ly/2EFYGkf

Rathore V, Singh N, Rastogi P, Mahat RK (2017) Correlation of inflammatory marker with glycogen phosphorylase BB (GPBB) in patients of acute myocardial infarction. International Journal of Contemporary Medical Research 4: 1122-1124. Link: https://bit.ly/32UjeOf